All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Define the scalar product $\mathbf{a} \cdot \mathbf{b}$ and the vector product $\mathbf{a} \wedge \mathbf{b}$ of the two vectors \mathbf{a} and \mathbf{b}.
(b) Show that the volume of the parallelepiped with three concurrent (i.e. sharing a common corner) edges, given by the vectors \mathbf{a}, \mathbf{b} and \mathbf{c}, is $\| \mathbf{a}, \mathbf{b}, \mathbf{c}] \mid$ where $[\mathbf{a}, \mathbf{b}, \mathbf{c}]=(\mathbf{a} \wedge \mathbf{b}) \cdot \mathbf{c}$.
(c) Prove that $\mathbf{a} \wedge(\mathbf{b} \wedge \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$.
2. (a) Using an Argand diagram, give a geometrical interpretation of the inequality $|z-5 i| \geq|z+i|$.
(b) Solve the equation $z^{6}=1$ and interpret it geometrically.
(c) By considering a geometric series (or otherwise) show that if a and θ are real numbers with $|a|<1$ then,

$$
a \sin \theta+a^{2} \sin 2 \theta+a^{3} \sin 3 \theta+\cdots=\frac{a \sin \theta}{1-2 a \cos \theta+a^{2}}
$$

3. (a) Write down Leibnitz theorem expressing the nth derivative of the product $u(x) v(x)$ in terms of derivatives of $u(x)$ and $v(x)$.
(b) Consider the function

$$
y(x)=\frac{\exp (a x)}{1-x^{2}}
$$

Find the stationary points of $y(x)$ and sketch the graph of the function for the two cases $a<0$ and $a>0$ on a single set of axes.
(c) Show that

$$
\sinh (x / 2)=\varepsilon \sqrt{\frac{1}{2}(\cosh (x)-1)}
$$

and determine the value of ε.
4. Find the integrals
a) $\int_{0}^{\infty} x \exp (-x) \mathrm{d} x$,
b) $\int_{-\infty}^{1} \frac{\exp (x)}{1+2 \exp (x)} \mathrm{d} x$,
c) $\int_{0}^{1} x \tan ^{-1}(x) \mathrm{d} x$,
d) $\int \frac{1}{x^{4}+2 x^{2}+1} \mathrm{~d} x$,
e) $\int \frac{\mathrm{d} x}{x^{3}+x^{2}+x}$.
5. (a) Find the solution of

$$
y^{\prime}=\frac{x-y}{x+y} .
$$

(b) Solve the differential equation

$$
y^{\prime \prime}+y^{\prime}-6 y=x+\exp (2 x)
$$

6. Determine the series solutions for the following differential equation

$$
\left(x^{2}-1\right) y^{\prime \prime}-8 x y^{\prime}+20 y=6 x^{2}
$$

about the regular point $x_{0}=0$.

